Source code for deltasigma._circ_smooth

# -*- coding: utf-8 -*-
# _circ_smooth.py
# Module providing the circ_smooth function
# Copyright 2013 Giuseppe Venturini
# This file is part of python-deltasigma.
#
# python-deltasigma is a 1:1 Python replacement of Richard Schreier's 
# MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based.
# The delta sigma toolbox is (c) 2009, Richard Schreier.
#
# python-deltasigma is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# LICENSE file for the licensing terms.

"""Module providing the circ_smooth() function
"""

from __future__ import division

import numpy as np

from ._ds_hann import ds_hann
from ._utils import circshift


[docs]def circ_smooth(x, n=16): """Smoothing of the PSD ``x`` for linear x-axis plotting. **Parameters:** x : 1D ndarray The PSD to be smoothed, or equivalently .. math:: x = \\left|\\mathrm{FFT}\\left(u(t)\\right)(f)\\right|^2 n : int, even, optional The length of the Hann window used in the smoothing algorithm. **Returns:** y : 1D ndarray The smoothed PSD .. seealso:: :func:`logsmooth`, smoothing algorithm suitable for logarithmic x-axis plotting. For a comparison of :func:`circ_smooth` and :func:`logsmooth` (accessed through the helper function :func:`plotSpectrum`) see the following plot. .. plot:: import numpy as np from deltasigma import * from numpy.fft import fft f0 = 0 osr = 32 quadrature = False Hinf = 1.5 order = 3 ntf = synthesizeNTF(order, osr, 0, Hinf, f0) f1, f2 = ds_f1f2(osr, f0, quadrature) delta = 2 Amp = undbv(-3) f = 0.3 N = 2**12 f1_bin = np.round(f1*N) f2_bin = np.round(f2*N) fin = np.round(((1 - f)/2*f1 + (f + 1)/2*f2) * N) t = np.arange(0, N) u = Amp*np.cos((2*np.pi/N)*fin*t) v, xn, xmax, y = simulateDSM(u, ntf, 2) window = ds_hann(N) NBW = 1.5/N spec0 = fft(v * window)/(N/4) freq = np.linspace(0, 0.5, N/2 + 1) # plotting plt.figure(figsize=(12, 7)) plt.subplot(211) plt.plot(freq, dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$') plt.hold(True) spec_smoothed = circ_smooth(np.abs(spec0)**2., 16) plt.plot(freq, dbp(spec_smoothed[:N/2 + 1]), 'b--', linewidth=2, label='$\\\\mathrm{circ\\\\_smooth}(S)$') plotSpectrum(spec0, fin, 'r', linewidth=2, label='$\\\\mathrm{plotSpectrum}(S)$') Snn = np.abs(evalTF(ntf, np.exp(2j*np.pi*freq)))**2 * 2/12*(delta)**2 plt.plot(freq, dbp(Snn*NBW), 'm', linewidth=1.5, label='$\\\\mathrm{from\\\\ NTF}$') snr = calculateSNR(spec0[f1_bin:f2_bin + 1], fin - f1_bin) msg = 'SQNR = %.1fdB\\n @ A = %.1fdBFS & osr = %.0f\\n' % \\ (snr, dbv(spec0[fin]), osr) plt.text(f0 + .45/osr, -20, msg, horizontalalignment='left', verticalalignment='center') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') figureMagic((0, 0.5), None, None, (-140, 0), 20, None) plt.ylabel('Spectrum [dB]') ax = plt.gca() ax.set_title('Smoothing and plotting for LOG and LIN axes') plt.legend(loc=4) plt.subplot(212) plt.plot(freq, dbv(spec0[:N/2 + 1]), 'c', linewidth=1, label='$S$') plt.hold(True) plotSpectrum(spec0, fin, '--r', linewidth=2, label='$\\\\mathrm{plotSpectrum}(S)$') plt.plot(freq, dbp(spec_smoothed[:N/2 + 1]), 'b', linewidth=2, label='$\\\\mathrm{circ\\\\_smooth}(S)$') plt.plot(freq, dbp(Snn*NBW), 'm', linewidth=1.5, label='$\\\\mathrm{from\\\\ NTF}$') msg = 'SQNR = %.1fdB\\n @ A = %.1fdBFS & osr = %.0f\\n' % \\ (snr, dbv(spec0[fin]), osr) plt.text(f0 + 1./osr, -20, msg, horizontalalignment='left', verticalalignment='center') plt.text(0.5, -3, 'NBW = %.1e ' % NBW, horizontalalignment='right', verticalalignment='top') figureMagic((0, 0.5), None, None, (-140, 0), 20, None) ax = plt.gca() ax.set_xscale('linear') plt.ylabel('Spectrum [dB]') plt.xlabel('Normalized frequency ($f_s \\\\rightarrow 1$)') plt.legend(loc=4) """ assert len(x.shape) == 1 or 1 in x.shape assert n % 2 == 0 nx = max(x.shape) w = ds_hann(n)/(n/2.) xw = np.convolve(x, w) yp = np.hstack((xw[n - 1:nx], xw[:n - 1] + xw[nx:])) y = circshift(yp, [int(n/2. - 1)]) return y