Source code for deltasigma._evalTF

# -*- coding: utf-8 -*-
# _evalTF.py
# This module provides the evalTF function.
# Copyright 2013 Giuseppe Venturini
# This file is part of python-deltasigma.
#
# python-deltasigma is a 1:1 Python replacement of Richard Schreier's 
# MATLAB delta sigma toolbox (aka "delsigma"), upon which it is heavily based.
# The delta sigma toolbox is (c) 2009, Richard Schreier.
#
# python-deltasigma is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# LICENSE file for the licensing terms.

"""This module provides the evalTF() function, used to evaluate a tf at the 
point(s) given by the user.
"""

import numpy as np

from ._evalRPoly import evalRPoly
from ._utils import _get_zpk, _is_num_den, _is_zpk


[docs]def evalTF(tf, z): """Evaluates the rational function ``tf`` at the point(s) given in ``z``. **Parameters:** tf : object the LTI description of the CT system, which can be in one of the following forms: * an LTI object, * a zpk tuple, * a (num, den) tuple, * an ABCD matrix (internally converted to zpk representation), * a list-like containing the A, B, C, D matrices (also internally converted to zpk representation). z : scalar or 1d ndarray The z values for which ``tf`` is to be evaluated. **Returns:** tf(z) : scalar or 1d-ndarray The result. """ # Original comment in deltasig: # In Matlab 5, the ss/freqresp() function does nearly the same thing. # in our case a transfer function is a scipy LTI object if (hasattr(tf, 'inputs') and not tf.inputs == 1) or \ (hasattr(tf, 'outputs') and not tf.outputs == 1): raise TypeError("Only SISO transfer functions can be evaluated.") if hasattr(tf, 'num') and hasattr(tf, 'den'): h = np.polyval(tf.num, z) / np.polyval(tf.den, z) elif (hasattr(tf, 'zeros') and hasattr(tf, 'poles')): # LTI objects have poles and zeros zeros = tf.zeros poles = tf.poles k = tf.gain h = k*evalRPoly(zeros, z)/evalRPoly(poles, z) # we try not to convert the given representation to another one elif _is_num_den(tf): num, den = tf[0], tf[1] h = np.polyval(num, z)/np.polyval(den, z) elif _is_zpk(tf): zeros, poles, k = tf h = k*evalRPoly(zeros, z)/evalRPoly(poles, z) else: # ABCD and A, B, C, D will be converted through _utils zeros, poles, k = _get_zpk(tf) h = k*evalRPoly(zeros, z)/evalRPoly(poles, z) return h